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Abstract—A fully nonlinear theory for the dynamics and active control of elastic laminated plates
with integrated piezoelectric actuators and sensors undergoing large-rotation and small-strain
vibrations is presented. The theory fully accounts for geometric nonlinearities (large rotations and
displacements) by using local stress and strain measures and an exact coordinate transformation.
Moreover, the model accounts for continuity of interlaminar shear stresses, extensionality, ortho-
tropic properties of piezoelectric actuators, dependence of piezoelectric strain constants on induced
strains, and arbitrary orientations of the integrated actuators and sensors. Extension and shearing
forces and bending and twisting moments are introduced onto the plate along the boundaries of
the piezoelectric actuators. Five nonlinear partial differential equations describing the extension-
extension-bending-shear-shear vibrations of laminated plates are obtained, which display linear
elastic and nonlinear geometric couplings among all motions. Piezoelectric actuator-induced warp-
ing is also addressed, and comparisons with other simplified models and nonlinear theories are
made.

I. INTRODUCTION

The post-buckling strength of thin plates plays an important role in the design of aircraft
structures because conventional aircraft structural elements are often designed to operate
in the post-buckling range. Hence, nonlinear problems considered in the theory of linearly
elastic plates were mostly those of post-buckling analysis, prediction of stability, and
nonlinear panel flutter analysis. In recent years, the rapid developments in aerospace
exploration have stimulated extensive research into the dynamics and control of flexible
structures. Because flexible structures have low flexural rigidity and usually have small
material damping and because there is no air damping in space, fast maneuvers often lead
to destructive large-amplitude vibrations, which introduce excessive material fatigue and
affect their operational accuracy. Thus, it is desirable to control and stabilize a space system
during and/or after any maneuver. To identify system characteristics and design strategies
for the control of large-amplitude plate vibrations, one needs to study the effect of geometric
nonlinearities and understand the nonlinear dynamic behavior of plates. This requires an
accurate nonlinear modeling of the plate and its accompanying control devices.

Active control can be used to achieve high damping factors and hence it is an effective
way of controlling low-frequency vibrations of flexible structures without the disadvantages
of passive control systems, such as heavy weight and large size. Active control systems can
be divided into point sensor/actuator systems and distributed sensor/actuator systems.
Point sensors and actuators require elastic supports, have large volume, and are relatively
heavy compared with the weights of flexible structures, and hence they significantly alter the
static and dynamic characteristics of such structures. Moreover, in a point sensor/actuator
system a large number of sensors are needed to reveal the system response, and hence the
on-board real time computation requirements are serious. Consequently, the so-called
adaptive (or intelligent) structures, which are structural systems with integrated distributed
actuators and/or sensors, provide an exciting new approach. Distributed sensor-actuator
systems transfer the on-board real time computation efforts to the sensor design processes
and reduce or even eliminate the requirements for signal processing. Moreover, some known
characteristics of the system can be integrated into the sensor-actuator design process.
Piezoelectric materials are commonly used in the design of such distributed sensor—actuator
systems,
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Lead zirconate titanate (PZT) and polyvinylidene fluoride (PVDF or PVF,) are the
most commonly used piezoelectric materials in structural control. They have similar elec-
tromechanical coupling effects (Jaffe er o/, 1971 Sessler. 1981). Applications of piezo-
¢clectric actuators and sensors in structural control include attaining control authority of an
acrodynamic body by altering the twist curvature and camber of its aeroelastic lifting
surfaces (Crawley er af., 1988), altering the shape of an optical surface to attain a range of
desired mirror curvatures and hence to quickly and accurately change the focal length or
pointing direction of the mirror (Chiarappa and Claysmith, 1981). actively controlling the
borne noise of structures (Atluri and Amos, 1988 ; Clark and Fuller, 1990: Wang ¢r al..
1991). etc. Moreover, piezoelectric actuators can be used to greatly enhance the control of
advanced composite structures with inherent elastic couplings and directional stiffnesses.

PZT is the most rescarched and used piezoelectric material in the control of structures.
but it is brittle and difficult to fabricate into complex shapes and large sheets of films. On
the other hand, the new material PVDF is characterized by such properties as flexibihity,
light weight and inexpensiveness. PVDF materials are available in large sheets of thin films
and easy to shape into specific geometries (o implement modal actuators and modal sensors
for the control and sensing of flexible structures (Lee, 1990). Furthermore. PYDF materials
have a large range of dynamic sensitivity, and their maximum response {requency is in the
GHz range. All these qualities have made PVDF very attractive for adaptive vibration
control of structural systems.

To date. models of induced strain actuator/substrate systems are very limited because
most of the researchers concentrated their efforts on the implementation of control algo-
rithms. Most of the models in the literature [e.g. Lee (1990), Lazarus and Crawley (1989).
Lee and Moon (1989), Im and Atluri (1989) and Tzou and Gadre (1989)] are based on the
Kirchhoft hypothesis and hence neglect transverse shear deformations. However. shear
effects are significant for composite plates because the ratios of the inplane Young’s moduli
E,{z = 1.2) 1o the transverse shear moduli G, arc between 20 and 50 in modern composites
and between 2.5 and 3.0 in isotropic materials. There are several refined shear-deformable
plate theories with the third-order shear theory (Reddy. 1984 ; Bhimaraddi and Stevens,
1984) being the most recommended theory. But most of the shear deformation theories.
including the third-order theory, do not account for the continuity of interlaminar shear
stresses and the elastic coupling between two transverse shear deformations. In the present
formulation, we extend the piecewise linear displacement field used by Di Sciuva (1987)
and Librescu and Schmidt (1991) by using quadratic and cubic interpolation functions to
satisfy continuity of interfaminar shear stresses, to accommodate free shear-stress conditions
on the bounding surfaces, and to account for nonuniform distributions of transverse shear
stresses in each layer.

Geometric nonlinearities are either totally 1gnored or considered in an incomplete
manner in most of the existing models. Geometric nonlinearities introduce nonhinear
dynamic responses, such as flutter and chaotic vibrations, into a plate system under steady
external excitations. Furthermore, in 2 nonlinear system an unstable “steady’ solution with
small amplitude can be sustained for a long time before it diverges. and hence it may be
mistaken for a linear stable solution (Fujino ef al.. 1990). Although the motion of a structure
subject to control actions is a transient vibration, Balachandran er af. (1992) showed that
modal interactions can produce small-amplitude transient vibrations in nonlinear systems,
which pose difficulties in their identification using linear identification methods (¢.g. moving-
block analysis or time domain techniques). For example, modal interactions can cause the
identified damping coefficients to be oscillatory and to assume negative values. Hence,
geomelric nonlinearities need to be accurately modeled in an adequate plate theory.

The most common nonlinear plate theories use von Karman strains to account for
geometric nonlinearitics but use linear expressions for the curvatures. The von Karman
strains do not account for all geometric nonlinearitics due to moderate rotations (Pai and
Nayfeh, 1991). Moreover, when the rotations are large, the stress and strain components
in von Karman type plate theories do not match the real boundary conditions because they
are defined with respect to the undeformed rather than the deformed coordinate system.

In general. both PZT and PVDF are mechanically orthotropic due to manufacturing
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and poling processes. Moreover, Lazarus and Crawley (1989) point out that the effects of
creep on predicting the actuation strains can be ignored but their hysteretic behavior cannot.
To describe the hysteresis, they define two mechanical/electrical coupling coefficients: a
one-sided secant coupling coefficient d* or d~ and a symmetric or an average secant
coupling coefficient d*. They also point out that the averaged coefficient is more suited for
finding the amplitude of the dynamic induced strains. It is also shown by Lazarus and
Crawley (1989) and the piezoelectric strain “constants’ are not constant but depend on the
induced strains. Moreover, the action of a piezoelectric element on a plate element is similar
to the loading of a distributed line force, which makes the cross-section warp as the
transverse shear forces do.

In this paper, the basic idea underlying the development of our former nonlinear plate
theory (Pai and Nayfeh, 1991) is extended to derive a set of mathematically consistent,
nonlinear equations governing the motion of laminated piezoelectric plates. The surface
analysis is done by using a vector approach, and the resulting expressions for the nonlinear
curvatures and mid-plane strains are combined with a layer-wise higher-order shear-defor-
mation theory and the extended Hamilton principle to derive variationally consistent,
shear-deformable, nonlinear equations of motion. The theory fully accounts for geometric
nonlinearities by using local stress and strain measures and an exact coordinate trans-
formation, which result in nonlinear strain—displacement relations that contain the von
Karman strains as a special case. Moreover, the model accounts for the continuity of
interlaminar shear stresses, the elastic shear coupling effects, extensionality, orthotropic
properties of piezoelectric materials, the dependence of the piezoelectric strain ““‘constants”
on the induced strains, integrated actuators and sensors at various orientations, and actu-
ator-induced, local actuating forces and moments. Moreover, actuators and sensors made
of PZT and PVDF are considered, the piezoelectric actuator-induced warping is addressed,
and comparisons with other simplified models and nonlinear theories are provided.

2. COORDINATE TRANSFORMATION, IN-PLANE STRAINS AND CURVATURES

We consider a rectangular laminated piezoelectric plate over the domain 0 < x < g,
0<y<b, z;<z<zyy,. In Fig. 1 we show the construction of a typical laminated
piezoelectric plate, where the ith lamina is located between the z = z; and z = z,, | planes,
there are N plies, and the thickness # = zy, , —z,. Every composite and piezoelectric lamina
is considered orthotropic, and the shapes of the actuators and sensors can be arbitrarily
designed, as shown in Fig. 1. We use two coordinate systems, as shown in Fig. 2(a). The
x—y—z system coincides with the undeformed configuration of the plate and is an inertial
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Fig. [. A typical arrangement of laminated piezoelectric plates.
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(a)

(b)

Fig. 2. (a) Coordinate systems: x-y--z = inertial coordinate system; £—n— = local coordinate
system, which is an orthogonal curvilinear coordinate frame, and (b) the undeformed and deformed
geometry of a reference-plane element.

coordinate frame, and the {—+#-{ coordinate system is a local, orthogonal curvilinear coor-
dinate system with the ¢ and 5 axes being on the deformed reference-plane. In Fig. 2(b),
we show a reference-plane element before and after deformation. Here, i, i, and i_ are unit
vectors along the x, y and z axes, respectively; i, i, and i, are unit vectors along the &, n
and ¢ axes, respectively ; and i; and i; are unit vectors along the & and # axes, respectively.
In Fig. 2(b), the coordinates of the corners of the reference-plane element are :

A:(x,,0),

B: (x+dx, y,0),

C:(x, y+dy, 0),

A" (x+u, y+o, w),

B (x+dx+u+udx, yv+o+uvdx, w+w.dx),
C' (x+utudy, y+dy+v+o.dy, w+w,dy),

where u, v and w are the components of the displacement of corner 4. Throughout this
paper, the subscripts x, y and z denote partial differentiation with respect to x, y and z,
respectively, except that i, i, and i. denote the base vectors of the x—y-z coordinate system.
The other subscripts do not represent differentiation.

It follows from Fig. 2(b) that the axial strains along the ¢ and n-directions are given,
respectively, by:

A'B —d

e, =" T o SO ru) ol Fwl— |, (1
dx
N —d o
o= fE:\/uf—l—(l—i—v].)Z%—wf—-l. (2)
dy : A

The unit vectors along the & and # directions are given by :



Nonlinear model of composite plates 1607

i = (7%3? = Tiy+ Tk, + Tsh., 3)
i, = (1—:5)%1} = Toiy+ Too, + Tosi, @

where
To=iies Te=ife To=iye ®

Using eqns (3) and (4), we obtain an expression for the inplane shear deformation as:
76 = sin™ (i, *ip) = sin™ (T, T2y + T12 T2+ T13T23), (7

where a bullet denotes an inner product of vectors. Equations (1), (2) and (7) are nonlinear
expressions giving the inplane strains e, e, and vy, in terms of the displacements.
Although i, is perpendicular to i, only when the inplane shear strain y, is zero, we
neglect the influence of ys on the deformed plate configuration and assume that i, is
perpendicular to i,. For a derivation that includes the influence of y,, the reader is referred
to Pai and Nayfeh (1991). Then, the unit normal to the deformed reference plane is given
by:
_i\Xiz__T. Tooi o T 8
;= i xiy| 31+ L3o0, + 1330, ®

where
T5 = (T12T23—T13T22)/R0, T;, = (T13T21—T11T23)/R0,
Ty = (Tlszz—leTzl)/Ro,
Ry = \/(leTzs“T13T22)2+(T|3T21—T11T23)2+(T11T22—T12T21)2~ )]

Combining eqns (3), (4) and (8), we obtain the following transformation which relates
the undeformed coordinate system x—y—z to the deformed coordinate system &4 :

i i TnTi Ty,
{il23} = [T]{ixyz}a {ilzs} = 5iy ¢, {ixyz} = iy , [T]= T3, T5,Tys | (10)
is i, VESY EPYEY

We note that [T]~' = [T]" due to the orthogonality of the £&-#—{ coordinate system.
Using the identities :

a0 d, . _ & O

‘1, = —=l, = — —"*1.; —Z . = ._JE-'_ 7 —_
P lj—ay i;=0, P 3 b 3 i 3 i; for k=123, (11)
we obtain
a 0 K5 “‘K|
a{im} =[KiJ{ii2s}, [Kil=|—-ks 0 —xg |, (12)

K, K¢l 0
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where [K,] and [K,] are curvature matrices and the curvatures are given by :

oy . I
Ky = — (4,{;'1,1 = =T Ty~ T T =T, T, (14)

(7{ ‘i} == — TZI\ TH TIZ“T32 - T:L»TM( (15)

iy = — T Ty~ T2y, Tor—Ts:, Tys, (16)

1t

Koy = — 5

Koy = — oy iy = =T Ty~ T, Ty =T, T, (17)
diy .
Kg = '(31 L= _T'_’i_)‘THMT22,YTi2—T23x T, (18)
or .
5 = (”"\12 =TT+ T T+ T5.Ts; 9

Here, k, and k., are the bending curvatures with respect to the y and — ¢ axes and k4, and
K¢, are the twisting curvatures with respect to the — & and » axes, respectively. Moreover,
eqns (14)-(19) are expressions for the curvatures with respect to the local coordinate system
&-n—{ and are normalized, not real, curvatures because the differentiation is taken with
respect to the undeformed element lengths dx and dy and not with respect to the deformed
lengths (1+¢,)dx and (1+e¢,)dv.

3. DISPLACEMENT FIELD, SHEAR WARPINGS AND STRAINS

Here we treat each composite or piezoelectric lamina as an orthotropic layer, as shown
in Fig. 1. Because some parts of an actuation or sensing lamina are made of adhesives and
not piezoelectric materials, the stiffiness properties of such lamina and hence the global
stiffness matrix of the laminated plate vary over the area. But because the mechanical
stiffnesses of piezoelectric materials (especially PVDF) are usually much smaller than the
composite laminae and because the piezoelectric laminae are very thin, one can assume that
the piezoelectric laminae are uniform and take the stiffnesses to be appropriate averaged
values of those of the piezoelectric and adhesive materials, thereby obtaining a constant
global plate stiffness matrix. Of course, if a finite-element method is used, this nonuniformity
can be fully accounted for.

For a piezoelectric plate, there are four kinds of loads——piezoelectric-actuator-induced
local loads, restrained-boundaries-induced loads, external loads and inernal loads. In Fig.
3(a), we show a cross-section of an undeformed plate segment. A typical deformation due
to external, inertial and/or restrained-boundary-induced loads is shown in Fig. 3(b). For a
plate with free boundaries and no external or inertial loads, a typical deformation due to
piezoelectric actuation is shown in Fig. 3(c). A real deformation is a combination of both.
Because the warping functions in Figs 3(b) and 3{(c) are different, we need to obtain these
warping functions separately.

To fully account for the change in configuration, we use local stress and strain measures
and a coordinate transformation. The movement of a plate element consists of two parts:
a rigid-body motion, which translates the corner A4 of the reference-plane element from (.
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3, 0) to (x+u, y+o, w) and rotates its dx- and dy-sides to be parallel to the & and # axes,
respectively ; and a local displacement, which results in the strains. Because the rigid-body
motion does not result in any strain energy, to obtain the elastic energy we only need to
deal with the local strainable displacements.

3.1. External load-induced displacement field

To include shear deformations in the mathematical model of a general anisotropic
laminated plate subjected to external, inertial and/or restrained-boundary-induced loads
[see Fig. 3(b)], we assume a displacement field for each layer because the material properties
are not uniform through the thickness. Using assumptions similar to those used by Pai and
Nayfeh (1991), we assume that the local displacements !, «¥ and u{’ (with respect to the
&-n-{ coordinate system) of the ith lamina have the form:

ul (e, .z, 0y = ul (5,3, D +20:(x, p, D +ysz+aV (x, 3,022+ f(x, v, 1)z°,  (20a)
uS(x,y,z,0) = ud(x, p, ) — 20, (x, p, )+ 742+ a8 (x, 3, )2 + B9 (x, y, )z°,  (20b)
uP(x,p,z,1) = ud(x, p, 1), (20c)

where ¢ denotes time, the u)(i = 1, 2, 3) are the displacements (with respect to the local

coordinate system) of a point which is located at (x, y, 0) before deformation, y, and y;
are the transverse shear rotations at the reference plane with respect to the — & and # axes.

(a) / Actuator

D e — E S
Z :

g g

Fig. 3. (a) A cross-section of the undeformed plate, (b) the deformation due to external, inertial,
and/or restrained-boundary-induced loads, and (c) actuator-induced deformation.
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respectively, and 0, and 0, are the rotation angles of the normal to the reference plane with
respect to the £ and # axes, respectively. Moreover, the o)’ and ' are functions to be
determined by imposing continuity conditions on the inplane displacements and inter-
laminar shear stresses and the free surface conditions. Because & is a local coordinate
system and the ¢—# plane is tangent to the deformed reference-plane. we have:

wW=ul=ul=0,=0,=7ulicx =iy = 0. (21
Using eqns (20) and (21), we obtain the local transverse shear strains as

auy' ouy!

g4l = L= e 20 s 3pY s (22a)
oz oy
N ,40) 2,00
L'Ll, («’u} 5 R
ey ="l =y k30 (22b)

Using tensor transformations (Whitney, 1987), one can relate the transformed stiffness
matrix [Q"] for the ith lamina to its principal stiffness matrix [Q"] and its ply angle. thereby
obtaining the stress—strain relations for the ith lamina as:

g (1”1 _(“ Q (ll)l 0 0 Q-(ll o [1 o 1
|| 0n 0% 0% 0 0 ou| |
ol _ O 0% Q% 0 0 0% | Juth 23)
Af 7|0 0 0 gnoge o | Tl :
ot 0 0 0 Q_(l)ﬁ %0 B i
) Low an ot o 0 oul L

We assume that there is no delamination, and hence the inplane displacenments u, and u.
and interlaminar shear stresses ¢, and o, are continuous across the interface of two
contiguous laminae. Moreover, we assume that there are no applied shear loads on the
bounding surfaces and hence ¢,; = g.; = 0 at the = = = and = = -, | planes. Hence, we
have:

e(x 3z, 1) =0,

ex,p. 2y, 1) =0,

wl vz D) —uT (e, s ) =0 fori=1,... N-1.
W vz L D) —ud T (e z 1) =0 fori=1,....1 N-—1,
ch Gy i) =8 x,iz .n) =0 fori=1.... . N1,
oz, D =0Tz 1) =0 fori= 1 N

N (v zye 1) =0,

(X y oy ) =0, (24)

These 4N algebraic equations can be used to determine the 4N unknowns (i.e. o, o0, B,
pY fori= 1,.... N), by using eqns (22), (20a). (20b) and (23), in terms of y, and 75 as:
0 _

o alyya+aisys,

)

i
Ay ¢

a(zllzh"'az.)s“/s-,
RON (i) n,
BY = bUya+ b5y s

BY = b8hyatbiiys, (29)

fori= 1.....N, where the a} and by} are functions of the z,, 0¥}, Q%! and Q¥2.
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3.2. A general displacement field and strains
It follows from eqns (20) and (25) that a general displacement field describing the
deformation due to any load can be represented by

ud(x,p,2, 1) = ul(x,y, 1) +20,(x,y, 1) + 75955 + 7494 (26a)
U (x,y,2,1) = u3(x,y,1) — 20, (x,, 1) +749%: +759%, (26b)
uP(x,y,z, 1) = ud(x, y, 1), (26¢)

where the g{}, g1, g% and g% are polynomial functions of z. For example, eqns (20) and
(25) can be rewritten in the form of eqns (26) with:

gt = a2 + 632,

9\ = z+all2? +b032°,

9% = z+afi? + b2,

g% = ahz’ + biiz2. @7

et ou') jox
ehe = ouf [0y = [SP1{y}, (28a)
&) ou |0y + ouf |ox
ou  oud
D)o Ty | e fre
@(= . =189 , (28b)
£ ou  ouy Vs
0z ox
where
1 00 z 0049 0 g% 0
[SP1=10 1 0 0 z 0 0 g% o g2, (292)
0100 z g% 4% g% g%
0 ()
) 923 G35
[S (2')] = [g(i) ) jl’ (29b)
14z 95;
{W} = {81,32, Yes K1, K2, Km?m y4ya ny: ySy}T' (29C)
Moreover,
1= Z—aya Y6=ay+5;, (29d)
_ 06, _ 00, 00, a0,
K = = —5, K¢ = ~ e e 5*5;, K¢ = Ko +Kg2, (29¢)

because - is a local coordinate system and the &~ plane is tangent to the deformed
reference-plane.

SAS 30:12-D
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Because the orthotropy of piezoelectric laminae is due to manufacturing and poling
processes, we assume that the principal mechanical or material directions are the same as
the principal piezoelectric directions. Also, we use the assumption that ¢/} = 0, include
induced-strain actuators, and obtain the stress—strain relations:

0'({)1 8({)1 ‘AIR (,.) @
i s ) a¥} T P>
othe = {Q(‘)] 3{5)2*1&21{ s {Gm} = [Qm} {8(1‘)}* (30
B X 13 13
at e —AR
where
N0 O% o0 oo
@=| 0t 0% 04| ©=|g0 oul a1
0 o8 0%
d;\V dy,V
A, = _.LJM’ Ay = L3273 )
Zipr Ly Zrpr—2y
A, =A,cos’a+A,sin’a,
A, = A, sina+ A, cosa,
A, = 2cosasina(A, —A,). 32)

Here, V', is the applied voltage across the actuator which is located between the z = z, and
z = z;,1 planes; d;, and d,, are the piezoelectric strain constants with respect to the principal
piezoelectric directions 1 and 2 (see Fig. 4), which may be functions of the induced strains
¢,, and &,, (Lazarus and Crawley, 1989) ; A, and A, are the free actuating strains along the
1 and 2 directions, respectively ; A, and A, are the free actuating strains along the deformed
structural axes & and n; A|; is the inplane shear actuating strain (Lazarus and Crawley,
1989 ; Jones, 1975); « is the angle between the axes 1 and £; and R is a function that
describes the location of the actuator, which is given by :

R = [H(z—z)— H(z -z, )]L(x, ), (33a)
where H{(z) is the Heaviside step function defined as

Hzy=1, z>90,
=0, z<0. (33b)

Actuator

n 4

Fig. 4. The principal piezoelectric directions (1 and 2) of a piezoelectric actuator,
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L(x, y) describes the location of the actuator on the reference plane and is defined as:

L(x,y) = +1 if the point (x,y) is covered by the actuator,
=0 if the point (x, y) is not covered by the actuator, (33¢c)

where the + signs are used to account for the possibility that the piezoelectric material can
have different poling directions on the same lamina (Lee, 1990). For example, if the actuator
is a rectangular one, then

L(x,y) = £ [H(x—x;0) = Hx—x2)I[H(y —y;)) —H(y—y,2)], (33d)

where x = x;;, x = x;,, y = y;, and y = y;, represent the border lines of the jth actuator
on the /th lamina.

It follows from eqn (30) that the stresses are proportional to the mechanical strains,
Wthh are the difference between the total strains (¢}) and the free actuation strains (A,
A,, A;). Also, eqns (30) and (32) show that an induced strain actuator can only introduce
inplane extension or compression and/or inplane shear deformations.

3.3. Actuator-induced displacement field

To solve for the actuator induced warpings with free boundaries and no external or
inertial loads, we assume that the displacement field for the ith composite lamina has the
same form given eqns (26) and (27), but the values of the af) and b are different from
those in eqns (25). For the actuator located at the /th lamina, we assume that its displacement
field is the same as that given by eqns (26) but :

g = aliz? +b0,2° + ey 24,

g% = z+aliz? + b2 + Pzt + ek,

9% = z+al? + b3+ Bzt + 2,

9% = alz* + bz + Pzt (34)

Because the peak of the warping function should be at the actuation layer and the
signs of the shear angle change within the actuation layer, we assume that :

9r15:(2) +915:(z141) = 924:(2) + G24:(214 1) = 0. (35a)

Because a thin piezoelectric actuator can only provide inplane strains ¢,,, &,, and ¢,, but
not transverse shear actuating forces, we have:

N Zier N Zivr
Zl j offdz= % J ot dz =0. (35b)
i= Z; i=1 Jz;

Substituting eqns (27), (34), (26), (28b) and (30) into eqns (24) and (35) and then setting
each of the coefficients of y, and y; equal to zero yields:

2419z, + 3623 + 6,40z} = 0,

2a9z, + 3423 +8,4c80z3 4 6,,56\0zF = —1,

2080z, + 36023+ 6,4c4923 + 6,562 = —1,

2059z, + 364022 +6,4c40z3 = 0. (36a)
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alyz} +bVsz; + 8,z — al)zi — bz} — 8 chlz) = 0,
a2} + b5z} +6,¢05z +8,%z] —alilzl —b
afizl +b%z] + 8,0zt + 6,80z —a¥lzi—b
afsz; +b%sz) + 8,8z —aldz] — bYle] — 6,z = 0,

%Qaiz;+ 30,22 +8,4¢8sz) + 6,560z + 0% (2ahz, + 360,27 + 8,/4c0sz))
— 0% (2a%z;+3bY)z7 +6,4cH)z] +6,,5¢4)z7)
- Q%(Zaﬁ’}z,+ 3b(f)z +5’,f46’(’> D= Q'(«i’g — 0%,
00 (2asz,+ 364527 +8,4c85z]) + 0% (2alsz, + 360522 + 8,4k 2 +6,5605z7)
—09(2aY)z,;+3bY)z7 + 8,4l
— 03 QaYiz;+3bYz} +é;I4C(t?S}Z +06,5¢2z) = Ot — 0%,
5(2asz;+ 365427 +6,4csz] +8458032) + 095 Qahz,; + 36,2} + 8,4¢sz))
—0¥1(2aY1z;+ 364327 + 5‘,‘1462"22? +8,,5¢4)27)
O 2ailz + 39023+, Acz}) = 01— O,

00205z, +3b%sz7 + 8,4c%5z]y + 0% (2alsz, + 36527 + 8,4csz) + 6,58527)
— 0W(2aY2z;+ 361z} + 8 /4c¥iz))

— 0242z, 4 35122 + 8 A1z} +6,531z8) = O — 00, (36b)

fori=1,..., N—1,where j=i+1.

2002y +300 25 HOnA Yz =0,

200zy 0 +369 2%, oAV zh  +E0SE N = — 1,
200 zp + 3628 A Zh 0N S zh = — 1,
2a0zy ., 4365923+ 844z, = 0. (36¢)
2000z + 200 )+ 30 (2F 427 )+ 4z + 278 ) + 53¢ j‘ D ==2,
afy(z)+ 2101 )+ 3094 EF + 27 ) A8 (@ + 21 |)+5—U)(Zl4 v =—2 (36d)

[0 (1 + 20z 4+ 304427 + 8,4c5h2° +8,5¢542%)

=

[
[
2

+Q_(') (2a(,)z+3b(1 22+614C({2’Z3)] dZ = 0

(020 + 36827 +5,4¢2%) + OB (1 + 2402+ 33"
+5!4 “)Z +G;5€1’5a4)] dz = 0

=

]
[
&

=

[OD (1 +2a8hz+ 365422 +8,4chz° +6,5¢54z%)
+ 0D 2alkz + 360422+ 8,4¢4z1)] dz = 0,

Kl
[
X

iy A

(0D akz+ 368422 + 8,4c02%) + 08 (1 + 244z + 351} 2
+0,4c02° +6,5804z9)1dz =0, (36¢)

=

¥
[
X

where 8, is the Kronecker delta function. These 8N+ 6 algebraic equatnons can be solved
for the 8N+ 6 unknowns—a(}, a\, a¥, a, bi}, by, b4, bYL, for i=1, ..., N, and &},

&, e, e, ), L. We note that the reference plane cannot be chosen as the contactmg
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surface of any two laminae because it will make the shear angles continuous at z = 0. Also,
we note that eqns (24) are a special case of eqns (36). If there are several actuators covering
the same area of the reference plane, a superposition method can be applied to obtain the
warping functions if the input voltages to these actuators are proportional to one another.

For areas not covered by actuators, we propose to use the shear warpings shown in
Fig. 3(b). For the areas covered by actuators, we propose to use the shear warpings shown
in Fig. 3(c) if there are no externally applied loads. An appropriate combination of both
warping functions will be used in the presence of externally applied loads,

4. FORMULATION

Because there are difficulties involved in solving dynamic problems for a general
anisotropic plate, approximate or numerical methods are usually adopted and hence energy
formulations are much more practical. Here we use the extended Hamilton principle to
derive the equations of motion:

0= J (6T—o6V+oW,)de, 37
0

where W, denotes the variation of the nonconservative energy W,., which is problem
dependent and will not be considered in the derivation, and the variations of the kinetic
and elastic energies 7 and ¥ are given by:

N Zipn .
6T =~y J prb-an dA4dz, (38a)

N 2 au Ju U
5V = sU U U
{; J L(tl J ox +t;°9 3 +t3°6 az)dAdz. (38b)
Here, p' is the mass density of the ith layer, 4 denotes the undeformed area of the reference

plane, and D = d’D/ds2. The tractions t, are given by:
t, = of}i; +othi, +oPlis,
t, = ofli; + o, + ollis,
t3 = O'gi)li] +O'(3i)2i2, (393)
the absolute displacement vector D of a particle in the observed plate element is given by:
D = ui, +vi, + wi, + zi5 — zi, + uPi| +uPi, + uli,, (39b)

and the relative displacement vector U with respect to the deformed local coordinate system
E-n~{ is given by :

U = i+ ui, +uidi;, (3%)

4.1. Elastic energy

Variations of the unit vectors of the £&--{ coordinate system are due to rigid-body
rotations, which are given by:

5i! 0 593 ""692 i‘
5i2 =5 - 563 0 56‘ iz FY (408)
5, 80, -0, o JU,
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and hence
00, iy di, T5,0T5+T3:0T 5,4+ T330T
00,0 =i "0l =T 0T+ 71,0 5.+ 130T 557 (40b)
004 i, 0i, T5,0T 4+ T2:0T >+ T:0T

where 66,, 66, and 0, are virtual rigid-body rotations with respect to the £, n and { axes,
respectively. We note that the 66, are infinitesimal rotations and hence they are vector
quantities. Moreover, the 86, are along three perpendicular directions and hence they are
mutually independent.

It follows from eqns (39c), (26), (12), (13), (21), (29d) and (29e) that

ou  ouy, +(’3u‘2’), +(3u(3”_ tu (1)5 + “)al S i,
MR I TR A u o
Ox ox ! ox ° ox ox Pox

oul
= [e,+zK, +75.9Y5 +V4rgl4]ll+|i A ZKg Va5 7 595! J

+ (7595 + 74900 (= ki3 +rcsin) — (7agbh + 759585 ) (6 + iy ), (41a)
ou  ou’ ouY) oul 3 i, 0y
it B ST ST A Y TP m ! o2 40t
dy oy ooy P ooy oy T oy

dul 0 o |3 ) "1
= ’Ej)‘+3K62+V5y915+74y9|4 i+ etz +74,05 75,95l

+ (75975 + 749 D (— Koaiz + Kaiz) — (74954 +75955) (i3 + Kaly), (41b)
ou ouy ouy . ouy' .
= — —
0z 0z i+ 0z 12 oz

= (75975 + 729700 4 (aghi: + 7598501 (41c)

Substituting eqns (41) into eqn (38b) and using the fact that virtual rotations of the
coordinate system do not affect the elastic energy, we obtain:

N ikl . ;
V=73 J j (61665 + 041084y + 0\15 06} + 643065 + 03 06%) dxdydz,  (42)
“~

where
» au | . . .
& = ox i) =&l —Ks(yag5h +7595%), (43a)
34! v G 43b
8225'@'12=82 K4(ngls+r’4gm) ( )
. oU ou | . l ; ;
& =i+ 5 i) = e —xa(yag%h +7599%) +K5(y594% +749'%), (43¢)
Ox dy
. ou ou ; ;
= —rip+ iy =885 — Ky(7ag%s 75955 — K (7595 +74914)s (43d)
0z dy
) ou ou ; ;
= — i+ 5—iy =€l — Ko (7ag5h +7594 L) — w1 (sgY s+ 7494 h). (43¢)

'3 z ox
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Comparing the two strain expressions shown in eqns (28) and (43), we note that the
nonlinear terms in eqns (43) are due to the shear rotations y, and ys and the rotation of

the coordinate system.
Next, we determine variations of the curvatures x;. It follows from eqns (14)—(19),

(12), (13) and (40a) that:

J mok, dxdy = f <mx566| - %——6(92 +mKg,00; )dxdy+ J‘ mob,|iz5dy, (44a)
A

J dxdy f méb,}=5dx, (44b)
om -

j mdk g, dxdy ='[ (—50|+mx5502—m1c, 60, |dxdy fmae, Z¢dy,  (440)
A A v

)
mok,dxdy = f (—m 60, +mx 400, —mi, 60,
A A ﬁy

0x

om
, m5K62 dx dy = L (mK4501 a 692"‘"’"{259 dxdy+ J‘ maoﬂ;:g dx, (44d)
9
f mdks dxdy = f (—mx62691 — micy80, — 5’;’-503) dxdy+ j md0;Szh dx, (44e)
A A Ix

?
jméksdxdy=f (—mmé@,—mx6.502——£603)dxdy+jm503|§:‘5dy, (44f)
A A y

where m represents any stress resultant or moment ; they are defined in Appendix A.
Substituting eqns (44) into eqn (42), we obtain the virtual elastic energy in terms of
the stress resultants, stress moments, and inplane strains as:

= J‘ (Nlée, +N2592+N6576+®150| +®2592+®3593+F45'y4+r55y5) dxdy
A

+ f [—M,60, + M,80,+ms,00, +m,dy, +m625)’5]f:l(’) dx

+J;[—M6,601+M1502+m31503+m6,6y4+m,6y5]§:‘{,dy, (45
where
M, =M, —5,y5—5174, (46a)
M, = My—355595— 50y, (46b)
Mg = Mg—5,75— 51274 (46¢)
Mg, = M¢—52175—5174 (46d)
myy = (gy — 1)y s+ (g —y)ys, (46¢)
ms;y = (My—1ie))ys + (1, — Mgy )7, (46f)
0, = M6,X+M2y—m3,x,—m32x62+M1x5+M62x4, (46g)
0, = —Mlx—Mﬁzy—mglxﬁl—m32x2+M2x4+M6.x5, (46h)

0, = _mBIx_m32y+M1K61 —‘Mzkez +H62K2—M6,K., (46i)
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o= —mg i ~my+q:—5 11K, — 823K, —§12K61 —§21K62

+ (1, — g )K 4+ (P, — 1)K s, (46))
[Cs=—m —me+q, =511k, — 3K, —512Ke1 —521Ke2

+ (M — 1 YK g+ (Mg — 1)K s. (46k)

Here, M,, M,, My, M., m;, and m,, represent the total moment intensities (Pai and
Nayfeh, 1991) acting on the edges of the plate element. Equations (46) show that m;,, m;,
and ©, are nonlinear terms. We note that the effects of k, and x5 are nonlinear. It can be
seen from eqns (42) and (43) that if changes in the elastic energy due to changes in the
configuration are not included (i.e. the ¢; are used instead of the §;) and linear curvature
expressions are used, then there are no nonlinear terms in eqns (46) and m;, = m;,
=0;=0.

It follows from Fig. 2(b) and transformation theory that the relations between the
axial strains e, and e, and the displacements are :

I+e, =T\ (A+u)+T 0.+ T3w,, 47a)
1+e; = Thu,+Tr(1+0,)+ Thw,. (47b)

Taking the variation of eqns (47) and using eqns (5) and (6), we obtain:

591 = T1|5MX+ leév_‘,"}" Tlgéwx, (483)
5?2 = T2l5uy+ Tzzévy'*" T235w_,,. (48b)

It follows from eqns (3)—(6) that:

. 1 . . . e .,
oi, = Tte (Ou, i, +ovd, +ow,i.)— Ite. i, (49a)
iy = < [k G, o] — (49b)
2= T - vix yly Wil — 7 .
I =y, Pt ond Howt] =
Using eqns (49), (8) and (40b), one can show that:
(] +€|)692+T3]5u_\,+ T3251)X+T336W_‘, = O, (503)
—(l +€2)50| + T315u}. + T325L’_,. -+ T336wy = 0. (50b)
It can be seen from Fig. 2(b) that:
Oyey = Oy *hy, Oyey = O, -if, (5D

where y¢, = Y62 = 76/2. Using eqns (49) and the relations i, = ij and i, = i3 (i.e. neglect the
influence of y, on the change of plate configuration), one can show that:

1 1
5‘))6 = I—Ievl (T215ux + Tzzévx + T236w_‘.) + “1—_;; (T| léuy + leévy + T| 35wy). (52)

Substituting eqns (48), (50) and (52) into eqn (45), we obtain:
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Su,
5V=J:,[{N1aN6/(l+el)a —0,/(1+e)}[T]{ v,
ow,

du,
+{Ne/(I+e3), Na ©/(1+e)}[T]] bv, p +©3885+T 48ys+ T s0y50ys] dxdy
Sw

¥

+ J' [‘“M;égl -+ M62602 +m32603 +m25'))4 +m626')15]$:% dx
-+ J‘ [—M¢,00,+ M 60, +m3,805+mg 8y, +m Sys324 dy. (53)
¥
4.2. Kinetic energy
Substituting eqns (26) and (21) into egn (39b) yields:
D = ui, + vl +wi, + 203 — 28, + (75905 + 7497011 + (74954 + 75981 (54)
Because the rigid-body rotation of the &#-{ coordinate system results in the main part of
the rotational kinetic energy (the other part of the rotational kinetic energy is due to shear
rotations), we need to account for the virtual kinetic energies due to the virtual rotations

of the coordinate system, which are 8i;, i, and di,, as shown in eqn (40a). Taking the
variation and the time derivative of eqn (54), we obtain :

oD = i.0u+i,00+i.0w+ (g0, + 9974 + (g, +9%i2) 6y
+1(7495% + 75955 — 215100, + [20) — (75915 + 7491013166,
+ (5% + 79801 — (7.9%k +75955)11166, (552)
and
D = i, + 5, + Wi, + 205 + (5% + Fag0Dh1 + 205 590 + PagiDi + (598 + 749001,
+ (7ag%h + 759902 + 200495 +7 5951 + (7499 + 759801, (55b)
where the dot denotes differentiation with respect to time and

i = Tpihi+ Tpal, + T,
i, = T+ TkZiy + Tisies
= Ti+ Toai, + Tisl,, (55¢)

for k = 1, 2, 3. Using eqns (55) and the identity i i, = 0 in eqn (38a), we obtain

67T = — L (Au5u+ AU&H— AM.5W+ Ay4(s'}?4 +A755')’5 - Ag‘éel +A92562 +A93593) dXdy,
(56)
where the inertial terms 4,, 4,, 4,, 4,,, A,,, Ay, Ag, and A, are given in Appendix B.
4.3. Eguations of motion

Substituting eqns (50), (56) and (53) into eqn (37), integrating the terms in eqn (37)
by parts, and then setting each of the coefficients of du, dv, dw, dy, and 8y equal to zero,
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we obtain the following equations of motion:

Frio+Fop = A, 4w,

Fyo+ Faap = A, + ot

Faiy 4 Faop = A4 paw,

Mg+ My —qa+8 1Ky +52K, +8 256, + 821762
— (g — Mg )k g — (Hlgy — 11, K s = A, + tsYas

My +Mea,— g+ 851K 580+ 5 2Kke 1 +82Ke2

— (g — W JKg — (Mgy — 11 )Ks = A, +usis,
where

{Fi1,Fy,F3,} = {Ns»Na/(l+€1)~"@2/(1+31)}{T}~
{Fi2 Fyy, Fi} = {Ns/(l+€z),N2»®s/(1+€2)}{TL

(57a)
{57b)
(57¢)

(57d)

{57¢)

(38)

We added a linear viscous damping term to each of eqns (57), where the p, are the damping

coefficients. The boundary conditions for the plate are of the form:
Alongx=0,x=a:
Su=0, F, +[MqTs5/(1 +e)lys
Sv=0, Fy+[MqTu/(1+e)],,

dw =0, FM‘*‘[M(»xTaz/(i“f“f’z)]y»
o, =0, M,,

-

dya =0, mgy,

vs =0, my;
Along y =0,y =h:

Su=0, F,+[MoT:/(1+e)l.
Sv=0, Fp+[MTu/(1+e)].
Sw=0, Fy+[MaT/(1+e)l.,
80, =0, M,,
Sys =0, m,,

dys =0, My,
At (x,y) = (0,0), (a, 0), (0, b), (a, b):

Su=0, —T3[Mg/(1+e)+Mq/(1+e)],
dv =0, —Ts[Me/(1+e)+Mq/(1+e)],
Sw = 0, WTzs[Miwa/(l+€1)+M61/(1+32)]~

The corner conditions for u and » are nonlinear as can be seen from eqn (59¢)

(59a)

(59b)

(59¢)

. The stress
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resultants and moments which include piezoelectric actuating forces are separated into two
parts: one is due to deformations (indicated by superscript d) and the other one is due to
actuating forces (indicated by superscript f). The result is:

{NhN27N63MhMZsMG,mGhmbmlsméZ}
_orard oard a7d agd d ,.d d .4 ..d
={NbN23N63M!sMzaMésmGISmZSmhméZ}

£ arf f £ £ f
“L{N{thst,MthyMsamm»mz,mhmszs (60a)

{”—"uml,mz,ﬁlz,maz,"_’lsz,melamm}

S osf sf o =f mf  ef  =f  af
‘”L{mhmlsm27m2am52»m62,m6hm61}a (60b)
where

N Zig . - .
(N, NG NG MG, M, MS,m§,, m, mi,mis} = {37 ) [SPITEVIIS V1 dz,

“i

{N(I‘DNg:NgsMi!"M‘2.7Mgamghmg,m§sm22} = {AhKZlRIZ}j [Q'(I)][S({)]dz, (613)
{n—"lc}a’ﬁc}s ~d23n-’td2)’ﬁ%27 n"l%2,n"121, ~%l} = {W}T Z {S(l!)]T[Q(l)][Sg)] dZ,
i=1 Jz;

Sf af mf ef mf  of  =f  af
{ml,m ;stmZ’mébméme’mGI}

(AL Ay AL} J [0V1[S91dz.  (61b)

Because the rotary inertia 4,, about the {-axis is due tq nonlinear effects [see eqn
(B12)] and is usually negligible,

@3 ‘+‘14g3 = 0, (623)
my; =0 alongx=0 andx=aq, (62b)
m;; =0 alongy=0 and y=5b, (62¢)

is a statement of the balance of the internal moments with respect to the {-axis, which has
no significant influence on the plate dynamics.

5. DISCUSSIONS AND COMPARISONS

5.1. Warping functions
For isotropic plates or one-layer orthotropic plates with an arbitrary ply angle, the
external-load-induced warping functions are:

4z3 , .
— 27 and gk =g% =0. (63)

3h
Thus, there is no coupling between the two transverse shear rotations y, and ys. This is the
so-called third-order shear—deformation theory (Reddy, 1984 ; Bhimaraddi and Stevens,
1984). However, for general laminated plates, g{} and g%} are nontrivial and hence y, and
vs are coupled. In Figs 5(a), (b), (c) and (d), we show the external-load-induced warping
functions for a five-layer graphite-epoxy laminated composite plate with the layups
[10°/5°/0°/5°/10°], [10°/5°/0°/—5°/ —10°], [60°/30°/0°/30°/60°] and [60°/0°/—30°/20°/10°],
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(a) (c)
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0.010 |~ 8y4l / 45 0.010 — 814 ll #5
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is: B1s Bys: Big

Fig. 5. External-load-induced warpings: (a) [107/57/07/57/10°1, (b) {107/5/0/—5/—107, (¢}
[60°/30°/0%/30°/60°], and (d) [607/0°/—307/20°/10°].

respectively. The material properties of each lamina are:

E, =192x10"psi, E,=E,= 1.56x10%psi,
Gsy =523x10°psi, G, = G,; = 8.20 x 10° psi,
Vi =V = 024-. Vyy = 049, (643)

and the lamina thickness 7, = 0.005 in. It follows from Figs 5(a) and 5(b) that antisymmetric
lamination results in even shear coupling functions g} and g4} whereas symmetric lami-
nation results in odd shear coupling functions. Moreover, antisymmetric lamination results
in more significant shear coupling effects. Tt follows from Fig. 5(c) that, for a symmetric
laminate with large ply angles, the warping functions g{} and g4 are quite different from
those used in the third-order shear theory. Moreover, it follows from Fig. 5(d) that, for a
general laminated plate, the warping functions g\ and g4} are not odd functions and the
shear coupling functions gV} and g4} are neither odd nor even functions.

In Fig. 6, we show the actuator-induced warping functions for a three-layer laminate
with the second layer being an actuator. The passive layers are aluminum with the prop-
erties

E=103x10"psi and v=0.334; (64b)

and the piezoelectric actuator is an isotropic G-1195 piezoelectric patch (Piezo System,
1987) with the properties:

E=9.14x10%psi and v=0.28. (64c)
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Fig. 6. Actuator-induced warping functions of an aluminum-piezoceramic-aluminum laminate.

Because both the actuator and substrate are isotropic, there are no shear couplings (i.e.
g\ = g% = 0) and g{} = g%).

In Figs 7(a) and 7(b), we show the actuator-induced warping functions for a seven-
layer laminate with the second layer being an actuator and the layup being
[10°/0°/20°/40°/ — 30°/90°/45°]. The material properties of the composite laminae and the
actuator are given by eqns (64a) and (64c), respectively. We note that, in this case, there
are shear couplings and the warping functions are very different from those of isotropic
plates and depend on the stacking sequence. We point out that the actuator-induced

(a)

0.020

0.015 [ \ . 47

0.010 | 46

0.005 #5
z 0 J #4

~0.005 [~ \ #3

~0.010 }- gis] | 181 #2

~0.015 |- \ #

-0.020 ' L

20.08  -0.04 0 0.04 0.08
Bysr 814
(b)
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0.005 |~ #5
z [V #4

-0.005 ! #3

-0.010 - 824 :825 #2

-0.015 |- : #

-0.020 1 I

-0.08  -0.04 0 0.04 0.08
8241 825

Fig. 7. Actuator-induced warping functions of a graphy-epoxy laminate where the layup is
[10°/0°/20°/40°/ —30°/90°/45°] : (a) g5 and g4, and (b) g,, and g.s.
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extension of the reference plane and the bending rotations are not included in the warping
functions because the warping functions represent displacements with respect to the
deformed local coordinate system.

5.2. Classical plate theory with von Karman nonlinearities
In the classical plate theory, it is assumed that normals to the midplane before defor-
mation remain straight and normal to the midplane after deformation, which implies that:

g3 =&y =7Ys=7s=10. (65)

If, furthermore, von Karman strains are used to account for the geometric nonlinearities.
then:

¥} = {{¢}7,0,0,0,0}", (66a)
{l/;} = {u»\' + % W»%, v+ é Wf, u, FOAWW, — W, — Wiy — 214”,\}-}]-, (66b)
and
I 0 w,
(T1=10 1 w,| (66¢)
0 0 1

as shown by Pai and Nayfeh (1991). We note that eqn (66¢) can also be obtained using
direct geometric considerations. If follows from eqns (65), (66) and (57a—c) that the
equations of motion in this case simplify to:

N\ +Ng, =A,+puu, (67a)
Neo+Nip = A, + pst, (67b)
Now, +New, +M +M) +New,+Nyw, + M, +M, ),

= A, +(A4y,)— (Ay), +pai. (67¢)

The boundary conditions for the plate are of the form:
Alongx=0,x=a:

ou = 0, N|.
ov=20, N,
ow = 0, NIW,\’+Nb"v_‘-+Ml_\'+2M6,\’_A()3’

_‘5Wx=0, M},

Alongy =0,y =b:
5u=0, N(,,
5U=0, N2,

5W=O, N(,WX+N2W),+2M6_‘,+sz+A()‘,
6Wy = O, Mz 5 (68)
At (x,y) = (0, 0), (0, b), (a, 0), (a. b):

5W =0, 2M{,.
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It follows from eqns (A1), (66), (30), (28a), (29a) and (61a) that:

_nr| A [B]]
(VLI I, ML M3 MY} = 1) [{B} D] (692)
(VL N5, NG, M5, Mo, Me) = (A A A :z}f [0°) 20"l dz (69b)
where
(4] [B] N [0 Z[09]
[[B] [DJ ;g' .[ L’[Q’(i)] Zz[Q"(i)sz- (69¢)

5.3. Linear piezoelectric plate theory
Linearizing eqns (57a—e), we obtain the following linear equations of motion for

piezoelectric plates :

N, —NSL,—N§L, = Lii—I, W, + s+ sy, + i, (70a)
N, ~N§{L, ~NAL, = I§— 1w, + I+ Ig¥s + pat, (70b)
M n+2M Syt M~ ML —2M{(L,,—M5L,, = LW

+ (L= Do+ 161§ s+ Is17a) + (15— 1w, + 15154+ 131 75), + paw, (70c)
m%lx'*'mgy”'qz—mgle'—mgLy = (Iss+177)7s+Use+I75)7s

+ L+ Lo — I\ W, — I W, + 4, (70d)
m?x+m%2y—q1 ""mt;Lx""mthZLy = (Tss+13)Ts+ (Tss+175)74
+Igti+Igh— T W, — I\ W, + Vs, (70e)

where the stress resultants are defined in eqn (61a) with:

{{[/} = {uxg Uy, Uy F Uy — Wy, — Wyps 2ny,)’4x, Vaps ')’Sx,'st}T (?1)
and
N 2k . . .
{9201} = (24,75} 2, J [SPTIOP1SY] dz. (72)
i=1 J2

The corresponding linear boundary conditions are of the form:

Alongx =0, x=a:

ou=0, N,

ov =20, N,
ow=0, M +2M,+1Lw,—5i—1I57s~1Is 7,

—ow, =0, M,

0ys =0, mygy,

o0ys =0, my;
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Along y =0,y =5

ou=10, N,

ov=0, N,,

ow =0, M +M, +LW, —10—1;7,— 147
ow, =0, M,,

T4 =V, My,

0ys =0, mgy; (73)
At (x, y) = (0, 0), (a. 0}, (0, b), (a, b):

Sw=0, —2M,.

5.4. Actuator-induced loads

It follows from eqns (A1)—(AS) that all stress resultants and moments are defined with
respect to the deformed coordinate system &-#-{ because local stresses are used in their
definitions. Moreover, to solve eqns (57a—e) subject to the boundary conditions egns (59a-
¢}, one needs to evaluate the integral

jA mr(Lxﬂ Ly’ Lx.w LA\"N Lyy) dx d}"~ (74)
A

where m' denotes either a stress resultant or a moment due to piezoelectric actuation.
Because L(x, y) is a Heaviside function [see eqn (33¢)], L. and L, are given by the Kronecker
delta function &, and L,,, L,, and L,, are given by the derivatives of . Hence, induced
actuating forces and moments act only along the boundaries of the actuators (Lee, 1990).
Because of this discontinuity in the actuating loads, the resulting structural strains are
discontinuous, especially around the boundaries of the actuators. Obtaining analytical
solutions for such problems by assuming displacement functions which can account for this
discontinuity in the strains is almost an impossible task. On the other hand, a numerical
approach by using finite-element methods can be used to account for this discontinuity in
the strains as well as arbitrarily designed and distributed actuators.

5.5. Thermal and moisture effects

Induced strains due to thermal and moisture expansion or contraction are of the same
form as those due to piezoelectric actuation except that the location function R(x, y, 2) is
not needed because thermal and moisture effects are usually continuously distributed over
the whole structure. Hence, the stress—strain relations are the same as those shown in eqns
(30) and (32) except that R = 1 and

] = OHAT, A:)_ == {XQAT, (753)

in the case of a thermal effect, and
A; - B|Am, A2 = ﬁlAm, (75b)
in the case of a moisture effect. Here, the o, are the coefficients of thermal expansion, AT is
the temperature change, the §; are the coefficients of hygrothermal expansion, and Am is
the percentage weight increase due to moisture. Moreover, the definitions of the stress

resultants and moments due to induced-strain actuation [see eqns (61)] need to be redefined
as:
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A®
N Zig I — )
{N‘;,Ng, Ng’ Mil.’Mga Mg)mglamg9 mg:mg2} = Z A(zl) [Q(’)][S(ll)} dZ,
i=1 J%; .
A%
U]
i ey A‘A s .
{’ﬁg,iﬁf]" ’ﬁg’ rﬁg: ~l‘6‘2, ng’mglﬂmgl} = z A(2’) [Q(I)][S(?:)} dZ, (76)
EUERG,
12

because all layers are subjected to thermal and/or moisture effects.

6. CONCLUDING REMARKS

We present a refined geometrically nonlinear theory for the dynamics and active control
of elastic laminated plates with integrated piezoelectric actuators and sensors. The theory
accounts for large rotations, continuity of the interlaminar shear stresses, elastic couplings
between two transverse shear strains, a nonuniform distribution of transverse shear stresses
within each layer, extensionality, the anisotropy of composite laminae and piezoelectric
actuators and sensors, the dependence of the piezoelectric strain constants on the induced
strains, and arbitrary orientations of the integrated actuators and sensors. The five derived
nonlinear partial differential equations show that the dypamics of composite plates is
characterized by elastic and geometric couplings among the two extension, one bending
and two shearing motions. The theory contains, as special cases, the classical plate theory,
the von Karman nonlinear plate theory, and the third-order shear—deformation theory.
This model offers great flexibility in that any number of arbitrarily placed and oriented
actuators in a substrate with complex elastic couplings can be modeled conveniently.
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APPENDIX A

The stress resultants and moments are defined as:

INLUNS NG M Mo M mg ma iy My |

Hl
M'M =

Sitl .
j (o1}, o a1} ISY] dz
bJsi

il Trel . R :
=2 '[ {o%. 6%, o1}, 20V}, 20}, zoll,

() ) )

a'f1gs + o829, 653g5s + o\hg\, ofigts + othgil, o8hgth + othgi} dz.

N S . 3
{429} =2 j {08}, a1} [SY1dz
=1 J=

:’? ! R . . ; . . .
J {09394k + oiglh., o8ig8h. + othgll.} dz.

N Tivd
{’ﬁlvl’hn,mz"hz.'ﬁﬁz,msz,mel,’hm} = Z J' {0‘|”|,6‘2”2,a(,”2}[s(;)]d2
=1 Jx

i

Fia
i 3 i) gt ) A0
{0"1'39(1'-)u o\igll, o\hghh. olhghi) dz.

——
tay
bl
oy
I
T
=
.
|
e
——

where
g g5 00 0 0 0
[s1=| 0 0 4fh g% O 0 0
0 0 0 0 g% g% g% g%

“it1
i D) ) gl B l) )iy ) )
j‘ {a\19%%, o'flgts, 65hg'h, othg(s. o Hhgih. othght, o'hgbh. o'yl

(Al

(A2)

(A3)

(Ad)

(AS5)

(A6)

We note that the stress resultants defined in eqns (A3)—(AS) are due to nonlinear effects and they only appear in

nonlinear terms, as shown in eqns (46).

APPENDIX B
The inertial terms are given by :

A, = L+ LT3 +(ysde+7415) T, A+@ L +7:0) T,

A, = L+ L T+ 16 sls+v4) T A+ alr+751) Tl

A, = 1ob L T+ [0l + 1) T+ 10l +ys 0Tl

A, = LT, +8T ), +WT )+ 15500, +$’-5156+)—"4155+(Y5156+}‘4155).1"| iy
+2(Gads7+Pslsel2 1 + @als+ysIsiz i
+1,(iT5, 5Ty +WTay) + Ipis i+ Falsr +Fslhs+ Galrr+75l)i B
+2(“/”51ﬁ7+)}4157)il i+ (ysler +V4157).fn iy,

A, = 1T, + 0T, +WT )+ 1o iy +Fsdoo+Falso+ (sles +7als6)i) )
+2(Falss +TsTehy "1 + (alsr+ysIeaiz 1
+ 1Ty 46T+ WT23) +LyiTs iy +Fadyg +F s T+ (Valrs +7slga)ia i
4207 sh oy + Y ad sl iz + (Vs +yalsg)iy vin

(B)
(B2)
(B3)

(B4)

(BS)
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Ay = 1y (T + 5Ty + W) — Dby = 20 Loy +Fals Db 1

= (sdor +7als i =T alyy —Fslsi— (Galne +ysls)iz iz

+ (ol +ysI )T 5y +5T35+9Ts5) + Qaly + 75T 1

+ 207l +95¥sTes +Favalsy +haysEsall ois

+ @ yedgr+ysyslea+yaralsi+yayslsois iy

+2(5avalsr 9 eyshs +Psvalre +s7slselia iy

+ (2 avalyr+2yayshs+7sysTuia s, (B6)
Ap, = LT, + 8T +WT3)+ oy iy + 75l +Fal sy

4+ sler + 750 by + 2007 +Fslsha by + Gala +9sTs i iy

—(sle+ 7T )@ +5T 3 +WT33) = (sTer +yad s s

—20syslos+Tsvelse +Tavslse+Paval sl i

—(svslos+2ysvelse +varalss)i i

=20 a7slsr +Fevalsi+isyslea+Tsvalsdz i

—(aysler+yavalsr+vsvsles +ysvalshia iz, (B7)

Ap, = (sls + I YTy + T2+ W) + sl + 7l s iy

s
+ 20 svslss +Tsvalss + T4y slss+Favalss)y *ia
+(575Tes 27574l 56+ Vavalss)iha
+Faysler+Tavalsr+TsysTes +Tsvalss
+ Garshor+ravelsr+ys7sles +ysvalseia i
— @als +ysI)GET s 5T+ WT13) = adr +9 s iy
~¥svadsr—~TsvsTes~Tavalss—Fayslss
~(spaler+ysysles +7avals7+ 74Tl iy
=20 avalr +7avshs+Tsvelas+75vsTss)z by
~Qavslrr+2ya0shs +ys5vsTsa)ia by, (B8)

where the inertias are defined as:

N Ty ; ) )
{IO’ Ih IZ& 159 169 I‘;‘s 18} = Z 40(') {I,Z, Zzsg?isg%sg(z%,g%} dZ,
=1 g5

=i

i Brr . " . p
{Linden oI} = 3, p gz, gz, g¥hz, gz} dz,
=1 Jn

H

ad 2'*+1 - o o o o o # o ™
{"5& 1563 1571 158} = z ,0(.) {g(l.%g(lt?hg(&g(]%’ Q(x'?zg(z’}u g?iggg} dza
[ER RN A
N :1+‘ = , # ” » = s 3 ;3 " "
{166: Tor dsg Iogy Do Igg} = Z p“’{g‘f’sgﬁ%,9?)59‘2'?:,g‘{’sg‘z‘ésyg‘ﬁg‘z‘i,ygig‘z‘%,y%"s 2%} dz (B%)
i=1 g%

1

and

L= Th T+ TpTu+ThTn,
Gob= T T+ 10T+ 1375, (B10)

for j, k = 1, 2, 3. We note that, when there are no shear couplings and hence
§(fﬁ =g§’% =0, LimL=lg=ly=1Is=1I=1I5=Ig=Iy=1Iy=1Ij=0.
To obtain the linear expressions of inertial terms, we use eqns (5), (6) and (9) and expand the transformation

matrix [7] as:

(Ti=| % Low (BI1)
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Substituting eqns (Bl1) and (10) into eqns (B1)—(B8) yields the linear inertial terms as:
A, = Tyi— 1% + 10+ 157,
A, = E— T, + 15+ T
= I,
Ay = s+ 1) s+ Ueg+ )i oA Lstib I — L 3 — 1,0,
Ao = (oot TasVis + g+ Lo+ Logi- 16— Ty, — I,
= [0 =117, — 1,75,
Ay, = — Do+ LydiH L+ 1 .
4, =0 (B12)



